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ABSTRACT

Ensemble sensitivities have proven a useful alternative to adjoint sensitivities for large-scale dynamics, but

their performance in multiscale flows has not been thoroughly examined. When computing sensitivities, the

analysis covariance is usually approximated with the corresponding diagonal matrix, leading to a simple

univariate regression problem rather than a more general multivariate regression problem. Sensitivity esti-

mates are affected by sampling error arising from a finite ensemble and can lead to an overestimated response

to an analysis perturbation. When forecasts depend on many details of an analysis, it is reasonable to expect

that the diagonal approximation is too severe. Because spurious covariances are more likely when correla-

tions are weak, computing the sensitivity with a multivariate regression that retains the full analysis co-

variancemay increase the need for sampling error mitigation. The purpose of this work is to clarify the effects

of the diagonal approximation, and investigate the need for mitigating spurious covariances arising from

sampling error. A two-scale model with realistic spatial covariances is the basis for experimentation. Formost

problems, an efficient matrix inversion is possible by finding a minimum-norm solution, and employing ap-

propriate matrix factorization. A published hierarchical approach for estimating regression factors for ta-

pering (localizing) covariances is used to measure the effects of sampling error. Compared to univariate

regressions in the diagonal approximation, skill in predicting a nonlinear response from the linear sensitivities

is superior when localized multivariate sensitivities are used, particularly when fast scales are present, model

error is present, and the observing network is sparse.

1. Introduction

Sensitivity analysis is a key methodology for un-

derstanding and tuning models. In numerical weather

prediction (NWP), the goal is most often to understand

the response to an arbitrary perturbation to initial con-

ditions or a parameter in a model. Accurate a priori

estimates of sensitivity to a perturbation or model

change can save enormous computational expense by

avoiding many integrations forward in time. So that

sensitivity estimates can be interpreted correctly, it is

critical to be sure that they give good approximations to

the perturbation response realized in the full dynamical

system. In the most common scenario, sensitivity esti-

mated with a linearization about a nonlinear system

evolution can be a good approximation as long as the

perturbation remains small. Nonlinear growth of a per-

turbation limits the length of period that a sensitivity

estimate is valid.

During the last two decades, sensitivity methods have

been extended with the goal of quantifying how a new

observation can affect a forecast by assimilating it at

analysis time, or understanding the impacts of existing

observation sets on forecast skill. Deploying a new ob-

servation based on the predicted response (e.g., error

reduction) is usually called targeting. Singular vector
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targeting (Buizza and Montani 1999; Gelaro et al. 1999;

Langland et al. 1999), whichmakes use of an adjoint, and

ensemble-based targeting (Bishop and Toth 1999;

Bishop et al. 2001; Hamill and Snyder 2002) were pro-

posed for synoptic midlatitude weather forecasting.

Langland and Baker (2004) also published the seminal

paper showing how an adjoint model and a variational

data assimilation system can together provide de-

terministic impact to observation sets. Later, Ancell and

Hakim (2007) examined the relationship between ad-

joint sensitivities and ensemble sensitivities, pointing

out that the two are equivalent in the limit of an infinite

ensemble, Gaussian statistics, and linear perturbation

growth. Around the same time, Hakim and Torn (2008)

and Torn and Hakim (2008) used the regressions un-

derlying ensemble sensitivities to identify dynamic links

in evolving weather patterns.

Application of adjoint and ensemble sensitivity

methods to high-resolution forecast problems (grid spac-

ing less than 5km) has to this point been sparse. One

example isWile et al. (2014,manuscript submitted toWea.

Forecasting, hereafter WHC) who applied ensemble

sensitivities to a weakly forced fog case over the Great

Salt Lake in Utah. Although the sensitivities between the

initial conditions and the forecasts exposed physically

plausible precursors for the fog, strong, coherent patterns

of sensitivity were absent. The sensitivities led to sys-

tematic overprediction of response to perturbations,

compared to the response measured from nonlinear

model integrations. As suggested by Torn and Hakim

(2008), an overpredicted response is one possible effect of

sampling error. Namely, if an estimated covariance be-

tween the initial conditions and a forecast metric is spu-

riously large because of sampling error, and the analysis

error statistics do not overestimate the covariance as se-

verely, the sensitivity can be overestimated. Most results

in the literature so far have used an approximation to the

analysis error covariance, where it is assumed diagonal

(e.g., Ancell and Hakim 2007; Torn and Hakim 2008).

Across a broad range of problems, and in particular for

mesoscale sensitivities lacking strong forcing or clear an-

alytic balances such as geostrophy, the effects of a di-

agonal approximation are not clear. In related work using

regressions with ensemble statistics to invert potential

vorticity, Gombos and Hansen (2008) avoided the di-

agonal approximation and instead used singular value

decomposition (SVD) to invert the covariance matrix,

where the SVD was truncated to retain only the number

of eigenvalues corresponding to the ensemble size. The

truncated SVD stabilizes the pseudoinverse of the rank-

deficient covariance. Later, Gombos et al. (2012) exam-

ined tropical cyclone track sensitivities, and projected

the covariance onto the leading eigenvectors to improve

the conditioning of the covariancematrix and stabilize the

inversion.

This work examines both the potentially deleterious

effects of the diagonal approximation and ignoring sam-

pling error on ensemble sensitivity estimates. The Lorenz

(2005, hereafter L05) two-scale model enables a large

number of data assimilation cycles with an ensemble filter.

Experiments with and without the fast scale in the model,

and including model error, provide context for interpret-

ing both synoptic and mesoscale sensitivities. An objec-

tively estimated factor applied to reduce the regression

coefficients is used tomitigate sampling error in ensemble

sensitivity estimates.

Ordinary least squares provides a starting point for de-

riving ensemble sensitivities in section 2,which also clarifies

where sampling error appears and how it can be mitigated.

Section 3 provides experiment details, and section 4 results.

Section 5 reviews the key results and suggests next steps.

2. Ensemble sensitivity

In this section a derivation of sensitivities from ordi-

nary least squares provides the basis for estimating the

impact of a hypothetical observation. It also elucidates

the role of sampling error and where mitigation may be

possible. The mathematical notion is given in Table 1.

a. Derivation from ordinary least squares

An expression for ensemble sensitivity is easily de-

rived as an ordinary least squares (OLS) problem.

Sensitivity of a forecast response function J(xf ) to per-

turbations in an analysis is often estimated from an ad-

joint sensitivity, expressed as

›J

›xa
. (1)

A probabilistic approach to estimating the sensitivity

arises naturally within an ensemble context. An ensemble

of forecasts from a sample of initial conditions provides a

sample of response functions. The ensemble sensitivity can

therefore be defined with respect to the ensemble means

Je and x
a, and is simply a statistical linearization of Eq. (1).

Given a sample of J values and a sample of analyses

xak, such as provided in a cycling ensemble data assimi-

lation, the linear sensitivity can be estimated with the

ensemble statistics. Collecting the ensemble of Je,k into a

vector Je and the ensemble of xak 2 xa into a matrix Xa,

the sample statistics give the linear prediction equation:

Je 5 [Xa]Tb1 e , (2)

which is a system of K equations in N unknowns. The

solution to Eq. (2) is an OLS problem that describes the
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change in xa needed to produce a given change in J. The

solution b̂ gives a linear statistical estimate to the

sensitivity:

b̂5
›Je
›xa

. (3)

Equation (2) is an underdetermined system because

K,N. The matrix [Xa]T is sometimes called fat, and the

associated system has an infinite number of solutions.

Instead of the usual minimum-variance solution sought

for overdetermined systems, we can seek a minimum-

norm solution for the underdetermined system (Golub

and Van Loan 1996). The solution arises from the op-

timization problem where bTb is minimized subject to

the constraint [Xa]Tb5 Je. The method of Lagrange

multipliers leads to the following form:

b̂5Xa([Xa]TXa)21Je 5QR2TJe , (4)

where Xa 5QR is the QR factorization of Xa. Note that

[Xa]TXa is full rank and can thus be accurately inverted

via the factorization. The quantity Xa([Xa]TXa)21 is the

right pseudoinverse of [Xa]T.

Solving the underdetermined system obviates the

need for the principal approximation proposed inAncell

and Hakim (2007). They defined ensemble sensitivity by

ignoring the off-diagonal components of Pa. The ap-

proximation follows from the minimum-variance solu-

tion to Eq. (2):

›J

›xa
5XaJe(X

a[Xa]T)215XaJe(P
a)21’XaJe(D

a)21 .

(5)

The sensitivity is reduced to a univariate (scalar) re-

gression for each diagonal element xa, which avoids the

matrix inversion.

The diagonal approximation can also be misleading or

inadequate. By ignoring off-diagonal components, the

sensitivity to individual state elements is overestimated.

Sets of state elements that are individually and strongly

correlated with the response function can still provide

clues about dynamic links, but they cannot be quantita-

tively correct because they ignore contributions from all

initial variables simultaneously. Further, when no co-

herent set of state elements are individually, and strongly,

correlated with the response function, dynamic in-

terpretation is much more difficult. This can easily be

imagined under weakly forced or nonlinear scenarios (cf.

WHC), or during periods of unbalanced dynamics com-

mon in mesoscale flows. Each analysis state component

contributes to the change in J, with the change given by

the linear combination of weighted predictors. For a

given change in J, each sensitivity is necessarily smaller

than when assuming no off-diagonal contributions.

Swapping the dependent and independent variables in

Eq. (2) leads to an alternate strategy, and an alternate

interpretation. That inverse sensitivity can answer the

question of what is the initial time change needed for a

given change in the response function. The linear model is

for the change in J that results from a given change in xa,

and the solution immediately reduces to a scalar problem.

Torn and Hakim (2009) adopted this strategy, which also

preserves in initial-condition covariances, for choosing

initial-condition perturbations adhering to the sensitivities.

b. Sensitivity to an observation

Regression to solve Eq. (2) gives a linear prediction

for how a forecast will respond to an initial-condition

perturbation. Estimates are valid for the ensemble sys-

tem used to derive the statistics, provided the distribu-

tions are Gaussian, the perturbation is small, and its

evolution is linear. Besides using the sensitivities to infer

dynamics, the sensitivity can be multiplied by an ex-

pected analysis increment from a new or hypothetical

observation in a data assimilation system, providing an

TABLE 1. Mathematical notation.

I No. of observations available at a particular assimilation

time

K Ensemble size

N Dimension of model state

J Scalar deterministic forecast metric (i.e., from an

adjoint)

Je Scalar forecast metric derived from an ensemble mean

forecast

Je K3 1 response vector with elements Je,k
xai N3 1 analysis state vector (ensemble mean) resulting

from assimilating observations 1, . . . , i

xai11 N3 1 analysis state vector (ensemble mean) resulting

from assimilating observations 1, . . . , i1 1

xak kth ensemble member analysis state vector

Xa N3K matrix containing the ensemble of state vector

perturbations (columns)

dxa N3 1 analysis perturbation vector (change in ensemble

mean)

xf N3 1 forecast (background) state vector

b N3 1 vector of regression coefficients

e N3 1 vector of errors in the sensitivity predictionmodel

H I3N matrix, each row containing a linearized forward

operator for observation i 2 [1, . . . , I]

hi 13N vector containing a linearized forward operator

for observation i (i.e., rows of H)

Pa 5Xa[Xa]T, N3N ensemble-estimated analysis error

covariance

Da 5diag(Pa), N3N ensemble-estimated analysis error

variance (diagonal)

R I3 I observation error variance

r N3N covariance localization matrix

a N3 1 sensitivity localization vector

a Scalar element of a
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estimate of the forecast response from including that

observation.

Consider assimilating i observations, and proposing

an additional observation i1 1. After assimilating ob-

servations 1, . . . , i, the resulting analysis is xai with error

covariance estimated by Pa
i . From the statistical analysis

equation, introducing the new observation yoi11 will

change the analysis as

xai11 2 xai 5Ki(y
o
i112 hi11x

a
i ) and (6)

Ki 5Pa
i h

T
i11(hi11P

a
i h

T
i111R)21 . (7)

The inversion needed in Eq. (7) is trivial because it is a

scalar. This is easily extended to consider multiple hy-

pothetical observations simultaneously by using any of

the myriad stable methods for solving Eq. (6).

The quantity of interest here is dJe, which is the re-

sponse to an initial-condition perturbation. A linear

prediction for the response arises naturally from the

product of the sensitivity and dxai 5 xai11 2 xai . From Eqs.

(3), (4), and (6),

dJ5

�
›Je
›xa

�T

dxai , (8)

5

�
›Je
›xa

�T

Ki(y
o
i112 hi11x

a
i ) , (9)

5 JTe [X
a
i ([X

a
i ]

TXa
i )

21]TKi(y
o
i112 hi11x

a
i ) . (10)

Sampling error can be easily treated in this form, but it is

also straightforward to simplify the expression above to

show that the sampling error in estimates of the per-

turbation response arises from only the covariance be-

tween J and hi11x
a.

c. Sampling error in ensemble sensitivities

Finite ensembles lead to sampling error in both the

sensitivity estimates and an analysis perturbation from

assimilating an observation. Sampling error increases the

probability that covariances are overestimated. The pre-

dicted response given by Eq. (8) is then overestimated. In

the diagonal approximation Eq. (5) the overprediction is

expected to be worse because the analysis variances are

expected to be underpredicted when subject to sampling

error.

Sampling error in the covariances underlying the sen-

sitivity estimates has not been adequately addressed, but

sampling error in ensemble data assimilation is typically

addressed with a ‘‘localization’’ function. Most often the

spatial correlation function given by the fifth-order piece-

wise polynomial documented by Gaspari and Cohn

(1999) serves this purpose. That correlation function has

proven useful at mitigating the sampling error, but has

some drawbacks. In particular, covariances among dif-

ferent physical quantities differ and can upset physical

balances such as geostrophy (Houtekamer and Mitchell

2005). Localization as a function of solely space does not

account for nonzero sampling error between the collo-

cated observations of different physical quantities. Other

methods use the covariance statistics themselves to esti-

mate sampling error, and derive an associated weight for

any scalar covariance (e.g., Anderson 2007; Bishop and

Hodyss 2009). Those methods require no assumptions

about spatial relationships and are not explicitly distance

dependent.

Localization in the assimilation is applied through a

Hadamard, or Schür, product that reduces the elements
of Pa in Eq. (7) and is denoted r+Pa. When solving the

statistical analysis equation with scalar regressions as in

Anderson (2003), the localization is applied as a factor to

each regression coefficient. Because the ensemble statis-

tics are derived from an ensemble filter including some

form of localization, the analysis increment from a hy-

pothetical observation would be subject to the same lo-

calization. Thus, in Eqs. (6) and (7) the same approach

would be used, shortening dxa and reducing the predicted

response dJ in Eq. (8).

A spatial function is inappropriate to handle sampling

error in the sensitivity estimates because the covariances

are in both space and time. Predicting the forecast re-

sponse from a hypothetical observation then requires a

second factor for handling sampling error. Methods re-

lying on the covariance statistics themselves are candi-

dates. Regardless of the method chosen to estimate the

weights on the sensitivity regressions, they can also be

applied via a Hadamard product or an additional factor

on the regressions. Although the factors applied to ele-

ments of the covariance between the analysis and re-

sponse function are not necessarily a function of space,

for lack of a better term we retain localization to

describe them.

Instead of an N3N matrix of localization values in

the data assimilation, either a scalar or an N3 1 vector

of localization values is appropriate. The resulting pre-

dicted, and localized, effect of a hypothetical observa-

tion on a forecast metric is

dJ5a+fJTe [Xa
i (X

aT
i Xa

i )
21]Tr+Pa

i h
T
i11(hi11r+P

a
i h

T
i111R)21(yoi112 hi11x

a
i )g , (11)
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where a is a scalar localization weight (regression fac-

tor) applied to the ensemble sensitivity estimates.1

When amultivariate regression is used, we can apply the

factor a to the projection of the entire perturbation on

the response. When the univariate form is adopted, the

expression in Eq. (11) simplifies and a scalar regression

factor appears anywhere in the product defining the

predicted response. The method used here for choosing

a is briefly described in section 3b.

Weights a 2 a; the localization reduces the predicted

response. In the presence of sampling error, accuracy of

the predicted response should improve from applying an

appropriate a. Experiments described in the next sec-

tion are designed to quantify its effectiveness, as well as

the effects of considering multivariate sensitivity under

different conditions.

3. Experiments

Experiments focus on validating the accuracy of the

predicted response. A general strategy is to apply a per-

turbation dxa to the initial state, then run the nonlinear

model forward to the forecast time. The resulting change

in response function can then be compared to the change

predicted from the sensitivities and the known pertur-

bation. A simple two-scale model provides a means for

considering different types of dynamics, model error, and

levels of noise in the system while generating adequate

samples from which to draw robust conclusions.

a. Model

A relatively low-dimensional two-scale model de-

scribed in L05 (model III) forms the basis for experi-

ments. For an atmospheric analog, this model improves

on the widely usedmodels documented in Lorenz (1995)

because the dominant waves in L05 result in strong

spatial correlations between neighboring grid points. A

summary of the most relevant parts of Lorenz (2005)

follows, and we refer the interested reader to that paper

for further details.

Using grid index n over N grid points, the model is

written as

dZn

dt
5 [X,X]K,n 1 b2[Y,Y]1,n 1 c[Y,X]1,n

2Xn2 bYn 1F . (12)

Here, Z is the prognostic variable, which has contribu-

tions from the slowly varying X and the quickly varying

Y variables, defined below. The constant K is chosen to

be much smaller than N, and an additional constant

J5K/2 whenK is even and J5 (K2 1)/2 whenK is odd.

The coefficient b determines the frequency and ampli-

tude relationship between X and Y, and is chosen to be

10 so that Y varies 10 times faster than X and with one-

tenth of the amplitude. The coupling coefficient c de-

termines how strongly X and Y force each other. The

forcing term F is chosen to be 15.

The advection terms denoted by the square brackets

in Eq. (12) are formulated by introducing a special sum,

S0, which is like the usual sum except the first and last

terms are divided by 2. Thus,

[X,X]K,n 52Wn22KWn2K

1 �0J

j52J

Wn2K1jXn1K1j/K

Wn 5 �0J

j52J

Xn2i/K , (13)

and S0 reverts to the usual sum when K is odd.

Separation of scales is achieved with a simple filter,

constructed to ensure the conservation of quadratic

quantities. Thus,

Xn 5 �0I

i52I

(g2bjij)Zn1i

Yn 5Zn2Xn , (14)

where g, b, and I are chosen such that theXn will equalZn

whenever Z varies quadratically over the interval n2 I

through n1 I. The result follows, for free parameter I:

g5 (3I21 3)/(2I31 4I),

b5 (2I21 1)/(I41 2I2) . (15)

Variable Zn can be thought of as a scalar quantity on

N grid points around a latitude circle. We choose

N5 960, as in L05, such that the grid spacing is 0.3758.
Two scales, X and Y, are superimposed to produce Z.

The choice of I determines the scale separation because

it controls the length of the filter in Eq. (14). The choice

of K, with implied J, determines the number of slow

waves on the latitude circle. As pointed out by L05, this

is a fundamental difference from earlier models, where

the wavelength was fixed and adding grid points simply

added more waves without changing the dynamics.

As for the Lorenz (1995) model, time normalization is

such that each nondimensional time step of 0.001 is

equivalent to 432 s. Equation (12) is integrated with the

fourth-order Runge–Kutta scheme. Table 2 summarizes

the parameter values for this model implementation.

An alternatemodel is easily created frommodel III by

setting Y5 0 in Eq. (12), thereby eliminating the fast

1When more than one observation is included in Eq. (11), then

the vector a is needed.
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scales. Called model II in L05, it can be used in two

experiment variants. First, model II can be considered to

be perfect in experiments that consider only slow scales.

Second, model III can be considered the truth, while

model II can be a deficient model used for assimilation.

In this case, the model lacks the energy exchanges be-

tween scales that are present in the truth, and observa-

tions of the truth will contain representativeness error

relative to the model.

b. Estimates for sensitivity localization

Althoughwehave freedom to choose a forecast response

J, here we choose the root-mean-square error (RMSE) of

the ensemblemean for relevance to real forecast problems.

Minimizing forecast RMSE is a common goal when con-

sidering new observation siting, for example, and ensemble

sensitivities can only be useful toward that goal if they are

accurate.

Sampling error mitigation in the sensitivity estimates

follows the Bayesian hierarchical filter proposed by

Anderson (2007). It is straightforward to apply, and the

goal here is simply to determine whether damping the

sensitivity covariance is important. A factor a5 [0, 1] is

estimated by running multiple groups of ensemble filters

over the experiment period. Comparing the regression

coefficients among the groups to the mean of the co-

efficients across the groups is onemeasure of the relative

sampling error based on signal-to-noise concepts. When

the diversity of coefficients among the groups is the

same order as the mean coefficient, it is noisy and leads

to a small a. Conversely, when the diversity is small

relative to the mean, we have confidence in the estimate

of the coefficient and a approaches one. For each sen-

sitivity estimate, a is obtained from running the hierar-

chical filter with ensemble distributions sampled at that

particular location and time, and applied in Eq. (11).

One could alternately choose to archive estimated re-

gression factors for later averaging, producing an em-

pirical set of factors to apply in all other cases, following

Anderson (2007). For simplicity here we apply the re-

gression factors estimated instantaneously and at each

sensitivity point. Further details do not aid interpretation

of the results herein, and we refer the reader to

Anderson (2007).

c. Design

Initial conditions (ICs) for the nature run and N en-

semblemembers are drawn from climatologies, which are

separately generated for models II and III. Synthetic

observations are generated every 6h by applying the

forward operator to the state-of-the-nature run, then

adding random perturbations drawn from a normal dis-

tribution with mean zero and unit variance. Two obser-

vation networks are examined: one is the even grid points

on the domain (480 observing locations), and the other is

every grid point in half the domain (also 480 observing

locations).

Three assimilation experiments provide context for

each observation network. The first assimilation experi-

ment uses the single-scale model II and observations

generated from the nature run with model II; that is, it

assumes a perfect model II. The second assimilation ex-

periment is the same except it uses the two-scale model

III. The third assimilation experiment uses the single-

scale model II for assimilation, but observations contain

two scales frommodel III; that is, the model is imperfect.

Each assimilation experiment starts with ensemble initial

conditions and assimilates the 6-hourly synthetic obser-

vations through the ensemble adjustment Kalman filter

(EAKF; Anderson 2003).

Ensemble size is set to 40 for all assimilation experi-

ments. Inflation and localization are used to mitigate

model error and sampling error during the experiments.

Following Hamill et al. (2001), a single value greater than

1.0 is used to inflate the prior ensemble spread, in order to

maintain appropriate ensemble spread. The Gaspari and

Cohn (1999) correlation function is used for localization.

Inflation and localization parameters are manually tuned

for each assimilation experiment to produce the lowest

6-h forecast RMSE.

The hierarchical filter, providing regression factors for

the ensemble sensitivity, makes use of four concurrently

cycling ensemble assimilation systems. Each identically

implemented system has a unique set, or ‘‘group,’’ of

ensemble members. The total number of members in the

four groups together is 43 405 160. As described above,

regression factors estimated from these groups are valid

at individual locations and times.

All assimilation experiments are for 30 days (i.e., 120

data assimilation cycles). The first 40 cycles are dis-

carded, and the last 80 cycles are used to explore the

ensemble sensitivity. After all sensitivities are com-

puted, perturbations to the initial conditions at each

assimilation time are used to assess the accuracy of the

sensitivities and the forecast response expected from

TABLE 2. Summary of model parameters.

Parameter Value

N 960

b 10

c 3

F 15

K 32

J 16

I 12

Dt 0.001
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the perturbation. Experiments from forming pertur-

bations based on each of 20 randomly selected grid

points give a total of 80 3 20 5 1600 trials for each

configuration.

Three perturbation approaches are tested, and com-

parisons aid in the interpretation of the results. First, a

perturbation equal to one standard deviation is in-

troduced to an individual grid point. The perturbation is

regressed onto the remaining analysis state using the

analysis statistics. The effect is a change in the ensemble

mean, but not the spread, and is similar to the approach

in Torn and Hakim (2008) to assess the linearity of the

response. The second experiment is the same as the first

except that the regression onto the analysis is spatially

localized in the same way as it would be applied in the

data assimilation. Again, the ensemble mean is per-

turbed, but not the spread. The purpose of this pertur-

bation is to compare against the third perturbation

method. Third, an observation of the truth is assimilated

with the ensemble filter. The observation here is the

truth value plus an error drawn from the specified ob-

servation error distribution. The first two perturbation

approaches are characterized by a grid-point perturba-

tion applied directly, and regressed to the analysis state

without considering observation or forecast error sta-

tistics, as is done during the data assimilation. We refer

to these first two as ‘‘direct perturbation’’ approaches.

4. Results and discussion

The accuracy of the predicted response is evaluated

by comparison against the actual response measured

from nonlinear simulations from the perturbed initial

conditions. Plotting the predicted response versus the

actual response from all 1600 trials on a scatter diagram

gives a comprehensive summary.Greater distances from

the 1:1 (diagonal) line indicate less accurate response

predictions. Those are summarized by an RMSE value.

The first tests assumemodel II in L05 is perfect; both the

nature run and the assimilating model contain only

synoptic-scale dynamics. Following that, we introduce

faster scales then model error.

a. Slow-scale, perfect-model experiments

In all panels in Fig. 1 (and all scatterplots in the re-

mainder of the paper), results from the univariate and

multivariate regressions are shown in blue and red, re-

spectively. The legend reports RMSE and linear corre-

lation (r2) values associated with the respective least

squares best-fit lines of each. Because the actual re-

sponse to the perturbation does not depend on the

method for sensitivity calculation, the ordinate values

for both univariate and multivariate regression results

are the same. Further, in Fig. 1a the results from both

regressions are identical because the product of the

sensitivity and an arbitrary perturbation (here one

standard deviation of the analysis) is the same. Locali-

zation affects the expected responses differently, but

here no localization is used on either the sensitivity or

the perturbation. Comparing results down a column of

panels in Fig. 1 shows the dependence on perturbation

method and amplitude (1sa regressed onto analysis, 1sa

perturbation regressed with localization r, and assimi-

lating an observation with localization). Comparing re-

sults across a row shows the effects of localization on the

response predicted from sensitivities (a applies in the

right column).

Sensitivities when only slow dynamics are present

demonstrate general robustness to regression approaches

and localization (Fig. 1). RMSE values for the univariate

and multivariate methods are similar in all cases. When a

perturbation is constructed regressing a 1sa value ap-

plied at the observation location, localization has little

effect (cf. Figs. 1a,c and Figs. 1b,d). Applying a also ap-

pears to have little effect (left versus right panels). Using

an observation error of 1.0 when assimilating a new ob-

servation leads to a small perturbation, which is clear

from the axis ranges in Figs. 1e and 1f.

The positive shift of the cluster of points from the

origin, when a perturbation is applied via assimilation

(Figs. 1e,f), is a consequence of the experiment design.

The observation error is specified too large (1.0) in these

experiments, illustrating the importance of observation

errors in predicting responses. This can be understood as

follows. The predicted J (i.e., the forecast error) is

positive definite, and will be predicted smaller in re-

sponse to a perturbation only when both ›J/›xa and dxa

are of opposite signs so that dJ is negative. Here, ›J/›xa

is given by the ensemble; dxa results from observing a

randomly selected discrete location in the true state,

which can be either less than or greater than the en-

semble mean analysis (it is a coin flip). Therefore, the

marginal distributions of the predicted response are

distributed randomly about zero, which can be seen

along the abscissa in Figs. 1e and 1f. The response from

integrating the nonlinear model is biased positive

because a single observation with error variance greater

than the analysis ensemble-mean error leads to that in-

dividual assimilated observation degrading the analysis.

The marginal distribution of the actual response mea-

sured from nonlinear simulations shifts positively along

the ordinate. Note that this will not occur when many

randomly located observations are concurrently assimi-

lated because the positive and negative observation in-

crements will largely cancel. Direct perturbation at a

single grid point (Figs. 1a–d) does not consider
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FIG. 1. Actual (nonlinear) perturbation responses against responses predicted from sensitivity estimates. Blue and

red show univariate (scalar) and multivariate regressions in the sensitivity estimates, respectively. (a),(c),(e) Results

without localization on the sensitivity estimates, and (b),(d),(f) results including localization. Shown are results taken

from (a),(b) a perturbation equal to one standard deviation of the analysis; and (c),(d) a perturbation of one standard

deviation of the analysis and the use of localization on the perturbation. (e),(f) Results from assimilating an

observation of the truth, including localization in the assimilation step. Least squares best-fit lines, RMSE, and

correlations (r2) are also reported.
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observation error and, therefore, lacks the positive

response bias.

In real weather prediction applications of ensemble

data assimilations, forecast errors and observation er-

rors are the samemagnitude, but Fig. 2 shows that in this

slow-scale, perfect-model experiment the forecast error

is O(0:001), much less than the observation error vari-

ance of 1.0. Figure 3 shows that specifying an observa-

tion error variance of 0.01, still larger than the errors, but

representing a much higher quality observation, effec-

tively reduces (but does not eliminate) the positive bias

in the actual response measured from nonlinear simu-

lations. Perturbed observations of the true state are

much less likely to make the forecast RMSE greater.

The forecast RMSE response is more evenly distributed

around zero. Predicted and actual responses also

increase by an order of magnitude, both because the

ensemble spread is smaller in the data assimilation and

because the higher quality observations can result in a

larger analysis increment. Because they are now the

same order of magnitude, the behavior of the predicted

response to perturbations from direct perturbation and

assimilation is easier to compare.

Results from slow-scale, perfect-model experiments

are consistent with published results that use the uni-

variate sensitivity formulation. Ancell and Hakim (2007)

and Torn and Hakim (2008) both showed that predicted

responses verified reasonably well against nonlinear

forecast responses. They did not address localization or

directly test assimilation with the ensemble filter. Rather

than choose random locations to form perturbations, they

chose regions showing maximum sensitivity. In the

assimilation experiments reported here, choosing only

locations where the predicted response would favor re-

duced forecast error (negative dJ). Choosing those loca-

tion would to some degree mask the effect of the

overspecified observation errors. In the next section we

test the response predictions under more demanding

conditions, where faster scales are present.

b. Two-scale, perfect-model experiments

Model III from L05 is the dynamical system for these

experiments; both slow and fast scales are included.

Based on the results in the last section, a smaller ob-

servation error of 0.01 is retained. All other parameters

and experiment design considerations are unchanged.

Results show that the faster scale elicits response

predictions with a greater dependence on the sensitivity

calculation method and the localization (Fig. 4). The

multivariate sensitivity consistently provides a more

accurate prediction of the response in the nonlinear

model. Direct perturbation with localization, using the

FIG. 2. Slow-scale perfect-model ensemble-mean analysis mean

squared error (blue) and ensemble spread (red) at an arbitrary

grid point.

FIG. 3. As in Figs. 1e and 1f, but with observation error variance of 0.01.
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nonlocalized sensitivity, results in a 46% reduction in

the RMSE of the response predictions from the multi-

variate sensitivities compared to the univariate sensi-

tivities (Fig. 4a). The corresponding assimilation

experiment results show a 28% improvement (Fig. 4c).

The best-fit lines to the univariate results in both

Figs. 4a and 4c are clearly flatter than the diagonal one-

to-one line that indicates a perfect prediction. This in-

dicates that the univariate sensitivities overpredict the

response magnitude compared to the multivariate

sensitivities. Compared to the results from the single

slow-scale model, greater scatter about the diagonal

line here results from the faster scale. Nonlinear error

growth, expected to be greater when the fast scale is

included in the dynamics, can cause individual points to

deviate from the diagonal. Because the ensemble sen-

sitivity method examined here is linear, it is not clear

that the sensitivity estimates can be improved for this

particular choice of forecast metric. Spatial or temporal

averaging in either the initial state or the forecast

metric may produce a more linear response, and nar-

row the scatter in these results.

Localizing the predicted responses leads to more ac-

curate response predictions. All of the RMSE values are

FIG. 4. As in Figs. 1c–f, but from a perfect model containing both slow and fast scales (model III), and using an

observation error of 0.01.

FIG. 5. Average localization factors for the scalar univariate

regressions (blue) and the multivariate regressions (black).
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smaller in the right-hand panels, compared to the left in

Fig. 4. Results in Figs. 4b and 4d also suggest further

improvements in the sensitivity localization method may

lead to improved response predictions. Figure 4d shows

some points spread along the ordinate. These are points

where the predicted response was nearly eliminated by

the sensitivity localization, but the response in the non-

linear simulations remained. The RMSE values in Fig. 4d

are sensitive to those points. Clearly, the localization

eliminated too much in the predicted response for that

handful of measurements.

The overpredicted responses from the univariate

sensitivities have relatively more to gain from localiza-

tion, and it is borne out in the results (e.g., Fig. 5), which

shows the time-averaged localization factors valid at

each grid point in the two-scale perfect-model experi-

ments. Generally, small localization factors for both

sensitivity calculation methods are clear, reducing the

sensitivity to a perturbation at all grid points to less than

half of what would be predicted from the directly sam-

pled ensemble statistics. This results from weak sensi-

tivities that are difficult to detect in the presence of

sampling error. Because the relationship between Je and

any one predictor in the multivariate regression is small

compared to the univariate case, the relative noise in the

individual grid-point sensitivity estimates is greater.

Thus, each requires more stringent localization than in

the univariate case, where only the effects of a single

grid point are considered. The single predictor in the

univariate case requires less localization because the

regression gives the stronger signal, which alsomanifests

in the overpredicted sensitivities.

An experiment with a large ensemble confirms the

expected effect of reducing sampling errors. Com-

pared to 40 ensemble members used in most of these

experiments, employing 1000 ensemble members re-

duces the RMSE of sensitivity estimates in Fig. 4 by an

order of magnitude. Error in estimating the regression

FIG. 6. As in Fig. 4, but for an imperfect model containing only slow scales, with a truth model containing slow and

fast scales.
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factors is greater because the difference between

groups of ensembles is much smaller, but in any case

result in factors approximately twice the value of those

in Fig. 5 to reflect greater confidence in the sensitivity

regressions.

Torn and Hakim (2008) noted that failing to localize

the perturbation (when regressing the perturbations as

in Fig. 4a) can be expected to give overpredicted re-

sponses. Results here show that overprediction can

persist even with localization on the perturbation, which

reduces dxa. Applying a also reduces the predicted re-

sponse by lessening the sensitivities, but the details of

the localization (regression factor) may need further

attention.

c. Imperfect model experiments

Here, the assimilating model is fundamentally in-

adequate relative to the truth. Model III is truth; model

II is the dynamical system used to assimilate data and

provide samples for sensitivity estimates. The true dy-

namics contain scale interactions not present in the as-

similating model. Representativeness error also exists

when observing the true state. The experiment config-

uration is analogous to having a model of poorer quality

than our current NWP models. The sensitivity itself is

agnostic to the model from which samples are taken.

Actual responses from the imperfect model, and over

the perturbation magnitudes in section 4a (i.e., Fig. 3),

should be qualitatively similar. Larger perturbations can

result from assimilating high quality observations of a

true system that differs from the model, and analysis

ensemble spread can be large at unobserved locations.

The analysis ensemble is also non-Gaussian (not shown)

because model inadequacy leads to a suboptimal filter.

The model is biased and lacks the small-scale variability,

compared to the truth. The sensitivities, and also the

imposed perturbations, cannot be expected to adhere to

the linear theory.

Results depend strongly on both the method for calcu-

lating sensitivities and the method for introducing pertur-

bations (Fig. 6). First, predicted responses from direct

perturbations are much more accurately predicted from

multivariate sensitivities; prediction errors are an order of

magnitude smaller (Figs. 6a,b). The results indicate that

sensitivities estimated with a poor model are better able to

predict the response to a perturbation that contains very

little noise. Here, the only noise introduced is from sam-

pling error when regressing the perturbations onto the

analysis; the localization cannot eliminate all the effects of

sampling error. Univariate sensitivities strongly over-

predict the response compared tomultivariate sensitivities.

Applying a improves the results by a greater factor than

for any of the perfect model experiments above.

Comparing the RMSE values reported in Fig. 6b to those

in Fig. 6a, predictions from the univariate andmultivariate

sensitivities improve by 57% and 38%, respectively.

The positive bias in the response from the nonlinear

model, pointed out in the last two sections, combines

with the effects of the model error here (Figs. 6c,d). The

analysis ensemble spread at unobserved grid points is

large; the observed grid points show lower error and

spread, while the unobserved grid points show much

higher error and spread. Figure 7 provides an example.

The large ensemble spread leads to a small sensitivity and

thus a small predicted response. The larger error also

leads to larger observation increments, and consequently

large analysis increments, in the assimilation. The in-

crements elicit a nonlinear (and positively biased) re-

sponse where none was predicted.

In addition to demonstrating the advantages of mul-

tivariate sensitivities, results in this section highlight the

need for a well-performing data assimilation system

from which to estimate sensitivities. The extreme model

errors in these experiments prevent an objective as-

similation system that assumes Gaussian statistics, such

as the ensemble filter, from approaching optimality.

Fortunately, experience shows that our mesoscale

models are probably not quite so poor as this example.

We next present a complementary experiment that

introduces a more realistic scenario of error growth in

the ensemble, while examining both perfect and im-

perfect model scenarios.

d. A data void

Here, we consider a network such that half of the state

(in space) is perfectly observed, while the other half is

FIG. 7. Example forecast (background) spread (red dots) and

ensemble-mean error (blue) for the imperfect model experiments.
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completely void of observations. The idea is to allow the

ensemble to produce more spread in half the domain,

and identify how the sensitivities can predict the effect

of any one observation. This observing problem is more

analogous to the observing problems considered by

Ancell and Hakim (2007), who examined the effect of

surface pressure observations over the North Pacific

data void. We present both perfect-model results with

model III and imperfect model results.

Whether or not model error is present, the multivariate

sensitivities clearly improve the response predictions

(Fig. 8). The univariate sensitivities strongly overpredict

the response; although much more accurate, the multivar-

iate sensitivities also overpredict the perturbation response.

Perfect-model results show some gain from localizing the

predicted sensitivity response (cf. Figs. 8a,b), but the

imperfect model results show a greater benefit (cf.

Figs. 8c,d). Except for a few outliers, the multivariate

sensitivities with localization lead to a much smaller

overprediction problem. The localization reduces the

impact from large-sensitivity elements in the well-

observed part of the domain that are contributing to

the sensitivity. The univariate sensitivity in the data void

does not account for large-sensitivity contributions from

the well-observed region and, instead, attributes all

sensitivity to individual analysis locations. In both cases,

localization certainly does not result in perfect response

predictions.

Individual grid-point sensitivities are smaller over the

data void because analysis uncertainty is larger in the

absence of observations (Fig. 9a). The multivariate

sensitivities account for it; although weighted, by com-

bining information where analysis uncertainty is both

small and large, the extremes of the univariate sensi-

tivity distributions are pulled toward the origin in Fig. 8.

The sensitivities are on average greater in the data void

FIG. 8. As in Fig. 6, but for an observing network on half the domain and a data void on the other. Results for

(a),(b) a perfect model with slow and fast scales and (c),(d) an imperfect model. As in earlier figures, the left side

shows results without localizing the sensitivities, and the right side shows results with localization imposed.
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(Fig. 9b), which is intuitive because any single observa-

tion in the data void should reduce the forecast error

more effectively.

5. Summary and conclusions

This work addresses two open issues through the use

of ensemble sensitivities to estimate a perturbation re-

sponse in mesoscale models: sampling error and the use

of a diagonal approximation to the analysis covariance

matrix in the regressions underlying the sensitivities.

First, ensemble sensitivities are derived from ordinary

least squares. It becomes apparent where sampling error

appears in the regressions used to solve the least squares

problem. It is also clear where the oft-used diagonal

approximation in the predictor (covariance) appears

and how it simplifies the problem. A regression factor,

inspired by the hierarchical filter fromAnderson (2007),

is proposed to mitigate the sampling errors in the sen-

sitivity estimates. Using the Lorenz (2005) two-scale

model in a cycling ensemble data assimilation system,

this study quantifies the effects of the regression factor

(localization) and the univariate approximation to the

multivariate regression on the effectiveness of the en-

semble sensitivities on predicting a response to an

analysis perturbation. Results demonstrate that damp-

ing poorly sampled covariances with a regression factor,

and use of the complete multivariate regression, in the

sensitivities can improve the perturbation response

prediction under certain circumstances relevant to me-

soscale problems.

Primary conclusions include the following:

d Under slow dynamics when covariances are strong and

easily sampled, the diagonal approximation to the

analysis covariances leads to skillful predictions of a

forecast response. Localization of the sensitivities to

mitigate the effects of sampling error has little effect.
d When fast scales are also present, sensitivities are not as

easy to estimate. Individual correlations are weaker,

and the multivariate sensitivity proves to be more

effective at predicting responses. Sensitivity localiza-

tion improves predicted responses fromboth univariate

and multivariate sensitivities.
d Model error leads to a less optimal assimilation system

fromwhich to estimate sensitivities, and the univariate

sensitivities are more prone to overpredicting the

response.
d The effects of model error and fast scales are exacer-

bated by the large analysis ensemble spread in the data

void. Multivariate sensitivities provide more accurate

response predictions when proposing new observa-

tions in a data void, particularly whenmodel error and

fast scales are present.

FIG. 9. (a) Scalar and (b) multivariate sensitivities averaged over 80 data assimilation cycles.

Observations are on the right half of the domain, and a data void is on the left. Results are for

the perfect two-scale model.
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The next step is to test these results in a real model.

The weakly forced Great Salt Lake fog case of WHC

presents one possibility. A strongly forced case such as

one of the downslope winds analyzed by Reinecke and

Durran (2009) would present a useful contrast. Cycling

an ensemble data assimilation system long enough to

produce samples for estimating sensitivity regression

factors, which could be averaged and applied in a

smaller ensemble, presents a computational challenge.

But it is tractable on today’s supercomputers.
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